翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

structural rule : ウィキペディア英語版
structural rule

In proof theory, a structural rule is an inference rule that does not refer to any logical connective, but instead operates on the judgment or sequents directly. Structural rules often mimic intended meta-theoretic properties of the logic. Logics that deny one or more of the structural rules are classified as substructural logics.
==Common structural rules==
Three common structural rules are:
* Weakening, where the hypotheses or conclusion of a sequent may be extended with additional members. In symbolic form weakening rules can be written as \frac on the left of the turnstile, and \frac on the right.
* Contraction, where two equal (or unifiable) members on the same side of a sequent may be replaced by a single member (or common instance). Symbolically: \frac and \frac. Also known as factoring in automated theorem proving systems using resolution.
* Exchange, where two members on the same side of a sequent may be swapped. Symbolically: \frac and \frac. (This is also known as the ''permutation rule''.)
A logic without any of the above structural rules would interpret the sides of a sequent as pure sequences; with exchange, they are multisets; and with both contraction and exchange they are sets.
These are not the only possible structural rules. A famous structural rule is known as cut. Considerable effort is spent by proof theorists in showing that cut rules are superfluous in various logics. More precisely, what is shown is that cut is only (in a sense) a tool for abbreviating proofs, and does not add to the theorems that can be proved. The successful 'removal' of cut rules, known as ''cut elimination'', is directly related to the philosophy of ''computation as normalization'' (see Curry–Howard correspondence); it often gives a good indication of the complexity of deciding a given logic.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「structural rule」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.